Complex Numbers

- Complex Numbers are based on a number whose square is -1.
- The **imaginary unit** *i*:

$$i = \sqrt{-1}$$
$$i^2 = -1$$

- Imaginary numbers and real numbers together make up the set of complex numbers.
- Complex numbers can be written in the form: a + bi
 - Where *a* and *b* are real numbers
- In COMPLEX number plane, to Graph (a, b) which represents a + bi:
 - o Locate real part on horizontal axis and imaginary part on vertical axis.
- Absolute value of a complex number: Distance from the origin in the complex plane.

$$|a+bi| = \sqrt{a^2 + b^2}$$

- To *add* or *subtract* complex numbers, combine real parts together and combine imaginary parts together.
- *Multiply* complex numbers/binomials the same as you do real numbers.
- a + bi and a bi are called *complex conjugates* of each other. Their product is a real number! We often multiply the numerator and denominator by the conjugate of the denominator to get rid of the radical (i) in the denominator.

Examples

- How do you write $\sqrt{-24}$ using the imaginary unit *i*?
- What are the graphs and absolute value of each complex number?

$$\circ$$
 -4 + i

• What is each sum or difference?

$$\circ$$
 $(2+i)+(-3+3i)$

$$\circ$$
 $(5+i)+(5-i)$

$$\circ$$
 $(-6-2i)-(4+2i)$

• What is each product?

$$\circ$$
 $-i(4-8i)$

$$\circ$$
 $(5-7i)(-4-3i)$

• What is each quotient?

$$\bigcirc \quad \frac{7i}{8+i}$$

$$\circ \frac{5+2i}{3-2i}$$

- What are the solutions of $3x^2 + 12 = 0$?
- What are the solutions of $-x^2 + 4x 5 = 0$?