Graphs of Equations

- Graph of an equation is the set of all points (x, y) that are solutions of the equation.
 - EX: Determine whether (a) (2, 0) (b) (-2, 8) lie on the graph of $y = x^2 3x + 2$.
- Most basic method of graphing an equation Point plotting
 - o Isolate one of variables, if possible
 - Construct table of values
 - Plot these points
 - Method very limiting and basic
 - EX: Sketch the graph of $y + 3x = x^2$

- O Why is this method limiting?
- Note: To graph in calculator, you must isolate the y on the left side, then enter into Y =
- Intercepts
 - o x-intercepts: (____, 0) Put 0 in for y and solve for x.
 - o y-intercepts: (0, ____) Put 0 in for x and solve for y.
 - o Note: Not all equations have one or both intercepts, and some have multiple of each.
 - o Remember: Intercepts are *POINTS* (*x*, *y*)
 - EX: Identify intercepts of 3x + 2y = 6

• Symmetry

- Symmetric with the x-axis if you substitute -y in for y, and get equivalent equation
- O Symmetric with the y-axis if you substitute -x in for x, and get equivalent equation
- \circ Symmetric with the *origin* if you substitute -x in for x, -y in for y, and get equivalent equation
- EX: Test $y = x^2 2$ for symmetry, and graph.

• EX: Sketch the graph of y = |x + 2|

- Circles: Directly related to the distance formula.
 - o Standard Form of the Equation of a Circle

$$(x-h)^2 + (y-k)^2 = r^2$$

- (h, k) represents the center, r represents the radius
- O What would equation be if centered at orgin?
- EX: The point (3, 4) lies on a circle whose center is at (-1, 2).
 Write the standard form of the equation of this circle.

