Functions

Operations

$$\bullet \quad (f+g)(x) = f(x) + g(x)$$

$$\bullet \quad (f-g)(x) = f(x) - g(x)$$

•
$$(f \cdot g)(x) = f(x) \cdot g(x)$$

•
$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}, \ g(x) \neq 0$$

•
$$(f \circ g)(x) = f(g(x)) - \text{COMPOSITE FUNCTION}$$

Domains: Consist of the x – values that are in the domains for *both* f and g. Also, the domain of the quotient function does not contain any x – value for which g(x) = 0.

Examples:

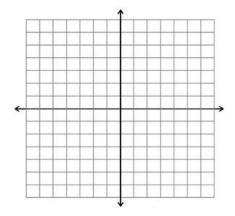
• Let
$$f(x) = 5x^3 + 1$$
 and $g(x) = x^2 - 4$. What are $f + g$ and $f - g$? What are the domains?

• Let
$$f(x) = x^2 + x - 6$$
 and $g(x) = x - 2$. What are $f \cdot g$ and $\frac{f}{g}$ and their domains?

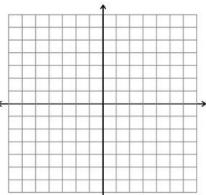
• Let
$$f(x) = x^2 + 1$$
 and $g(x) = x - 2$. What is $(g \circ f)(-2)$?

• For same functions in previous example, find $(f \circ g)(x)$, g(f(x)), $(f \circ f)(3)$

Inverses


- If a relation pairs element a of its domain to element b of its range, the **inverse relation** pairs b with a. So, if (a, b) is an ordered pair of a relation, then (b, a) is an ordered pair of its inverse.
- The graphs of a relation and its inverse are reflections of each other in the line y = x.
- How to determine if an expression has an inverse? How to verify two functions are inverses?
 - o A 1-1 function has an inverse that is also a function.
 - Horizontal Line Test (for every y there is exactly one x)
 - o f(g(x)) = x and g(f(x)) = x if the two functions are inverses of each other.
 - If f and f^{-1} are inverse functions, then $(f^{-1} \circ f)(x) = x$ and $(f \circ f^{-1})(x) = x$ for x in the domain of f and f^{-1} , respectively.
- To determine inverse of a function:
 - Replace f(x) with y, if needed.
 - Switch x and y.
 - O Solve for "new" y. This is your inverse function $f^{-1}(x)$. "f inverse" "inverse of f"

Examples


• Relation v

Х	-2	-1	0	1
у	2	0	3	0

- \circ What is the inverse of relation v?
- What are the graphs of *v* and its inverse?

• What is the inverse of the relation described by $y = 5x^2 + 2$? Graph both f and f^{-1} .

- Consider the function $g(x) = -\frac{2}{3}x + 7$.
 - What are the domain and range of *g*?
 - What is the g^{-1} , the inverse of g?
 - What are the domain and range of g^{-1} ?
 - \circ Is g^{-1} a function? Explain?

- For $h(x) = \frac{3}{2-x}$, what is each of the following?
 - $\circ h^{-1}(x)$
 - $\circ (h \circ h^{-1})(2)$
 - $\circ \quad (h^{-1} \circ h)(2)$