Turbo Algebra Review

- Interval Notation
 - o Bounded Both endpoints are defined

Bounded Intervals on the Real Number Line

Notation $[a, b]$	Interval Type Closed	$\begin{array}{l} \textbf{Inequality} \\ a \leq x \leq b \end{array}$	Graph $ \begin{array}{c c} \hline a & b \end{array} $
(a, b)	Open	a < x < b	$\xrightarrow{a} \xrightarrow{b} x$
[a,b)		$a \leq x < b$	$\begin{array}{c c} & \longrightarrow & x \\ \hline a & b & \end{array}$
(a,b]		$a < x \le b$	$\frac{1}{a} \rightarrow x$

o Unbounded – One or both endpoints are infinity (unbounded)

Unbounded Intervals on the Real Number Line

Notation	Interval Type	Inequality	Graph
$[a,\infty)$		$x \ge a$	$a \xrightarrow{a} x$
(a, ∞)	Open	x > a	$\frac{1}{a}$
$(-\infty,b]$		$x \leq b$	$b \rightarrow x$
$(-\infty,b)$	Open	x < b	$b \rightarrow x$
$(-\infty,\infty)$	Entire real line	$-\infty < x < \infty$	←

- o Examples:
 - **■** $-3 \le x \le 5$
 - x ≥ 2
 - *x* ≤ −1

- Fractions:
 - Common Denominator when adding/subtracting
 - o Always straight across when simplifying/combining
 - $\circ \frac{N}{o}$
 - o Examples:
 - $\frac{2}{3} \frac{1}{9} =$
 - $\frac{3}{4} \cdot \frac{7}{15} =$

Exponents

Properties of Exponents

Let a and b be real numbers, variables, or algebraic expressions, and let m and n be integers. (All denominators and bases are nonzero.)

Property

1.
$$a^m a^n = a^{m+n}$$

1.
$$a^{m}a^{n} = a^{m+1}$$

2. $\frac{a^{m}}{a^{n}} = a^{m-n}$

3.
$$a^{-n} = \frac{1}{a^n} = \left(\frac{1}{a}\right)^n$$

4.
$$a^0 = 1$$

5.
$$(ab)^m = a^m b^m$$

6.
$$(a^m)^n = a^{mn}$$

$$7. \left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$$

8.
$$|a^2| = |a|^2 = a^2$$

Example

$$3^2 \cdot 3^4 = 3^{2+4} = 3^6 = 729$$

$$\frac{x^7}{x^4} = x^{7-4} = x^3$$

$$y^{-4} = \frac{1}{y^4} = \left(\frac{1}{y}\right)^4$$

$$\left(x^2+1\right)^0=1$$

$$(5x)^3 = 5^3 x^3 = 125x^3$$

$$\left(y^{3}\right)^{-4}=y^{3(-4)}=y^{-12}=rac{1}{y^{12}}$$

$$\left(\frac{2}{x}\right)^3 = \frac{2^3}{x^3} = \frac{8}{x^3}$$

$$\left| (-2)^2 \right| = \left| -2 \right|^2 = 2^2 = 4 = (-2)^2$$

- o PEMDAS She limps from left to right
- O Anything to the zero power equals what???
- Examples:

$$-(-2x^{-1})^3$$

$$-\frac{(2x^3)^2}{y}$$

$$(2x^{-2}y^3)(-x^4y)$$

Properties of Radicals

Let a and b be real numbers, variables, or algebraic expressions such that the roots below are real numbers, and let m and n be positive integers.

Property

1.
$$\sqrt[n]{a^m} = (\sqrt[n]{a})^m$$

2.
$$\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$$

3.
$$\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$$
, $b \neq 0$ $\frac{\sqrt[4]{27}}{\sqrt[4]{9}} = \sqrt[4]{\frac{27}{9}} = \sqrt[4]{3}$

$$4. \sqrt[m]{\sqrt[n]{a}} = \sqrt[mn]{a}$$

5.
$$(\sqrt[n]{a})^n = a$$

6. For
$$n$$
 even, $\sqrt[n]{a^n} = |a|$.

For
$$n$$
 odd, $\sqrt[n]{a^n} = a$.

Example

$$\sqrt[3]{8^2} = (\sqrt[3]{8})^2 = (2)^2 = 4$$

$$\sqrt{5} \cdot \sqrt{7} = \sqrt{5 \cdot 7} = \sqrt{35}$$

$$\frac{\sqrt[4]{27}}{\sqrt[4]{9}} = \sqrt[4]{\frac{27}{9}} = \sqrt[4]{3}$$

$$\sqrt[3]{\sqrt{10}} = \sqrt[6]{10}$$
$$\left(\sqrt{3}\right)^2 = 3$$

$$\left(\sqrt{3}\right)^2 = 3$$

$$\sqrt{\left(-12\right)^2} = \left|-12\right| = 12$$

$$\sqrt[3]{(-12)^3} = -12$$

- Examples
 - Simplify: $\sqrt{3} \cdot \sqrt{8} =$

• Simplify:
$$\sqrt[3]{x^2} \cdot \sqrt[3]{x} =$$

• Simplify:
$$3\sqrt{8} + \sqrt{18} =$$

• Rationalize:
$$\frac{4}{3\sqrt{2}}$$
 =

Continuation of radical properties:

$$\circ \quad a^{\frac{1}{n}} = \sqrt[n]{a}$$

$$\circ \quad a^{\frac{m}{n}} = \left(a^{\frac{1}{n}}\right)^m = (a^m)^{\frac{1}{n}}$$

- o Examples:
 - Write in Exponent Form: $4x\sqrt[3]{x^2}$

- Write in Radical Form: $-2x^{\frac{1}{3}}y^{\frac{2}{3}}$
- Polynomials:
 - Adding and Subtracting: PEMDAS, and like terms get combined
 - Example: $(4y^2 3) (-7y^2 + 9)$
- Multiplying:
 - FOIL (FIRST OUTER INNNER LAST)
 - Example: (7x 3)(3x + 2)

- Example: $(2x 3)^2$
- Factoring Polynomials: Used to find zero's, simplifying polynomials, and solving polynomials
 - SEE WHAT YOU CAN PULL OUT! (Common factor--GCF!)
 - Perfect square trinomials have easy format to factor:
 - $a^{2} + 2ab + b^{2} = (a+b)^{2}$ $a^{2} 2ab + b^{2} = (a-b)^{2}$

 - $a^2 b^2 = (a b)(a + b)$
 - Sum or Difference of perfect cubes

 - $a^{3} + b^{3} = (a + b)(a^{2} ab + b^{2})$ $a^{3} b^{3} = (a b)(a^{2} + ab + b^{2})$
 - Perfect Square Trinomials: $a^2 + 2ab + b^2 = (a + b)^2$ AND $a^2 2ab + b^2 = (a b)^2$
 - Difference of Perfect Squares: $a^2 b^2 = (a b)(a + b)$
 - NOTICE: No middle term! EX: $4x^2 25$
 - Hint: If a = -1, you can pull out -1 factor to enable easy factoring.
 - Don't forget what solving a quadratic means. Represents graphically.
 - Group like factors, if required (ie, $(x-1)(x-1) = (x-1)^2$
 - EX: Factor: $x^2 + 7x + 6$

• EX: What is the expression $4x^2 - 28x$ in factored form?

• EX: What is the expression in factored form? $2x^2 + 5x - 12$

• EX: What is $x^2 - 12x + 36$ in factored form?

• EX: What is $81x^2 - 100$ in factored form?

• What are the *solutions* of the quadratic equation: $x^2 + 3x - 18 = 0$

 \circ Solve: $10x^2 + 2x - 46 = x - 4$

• EX: What are the zero's of: $5x^2 - 8 = 18x$

• EX: Factor: $x^3 - 64$

- Rational Expression: Quotient of two polynomials.
 - Simplest Form: When both numerator and denominator are polynomials that no longer share any common divisors/factors.
 - Domain: Comes from non-simplified form
 - Adding/Subtracting: Find LCM of denominator.
 - Factor expressions completely.
 - LCM of the denominator (LCD) is product of all prime factors (unique) to their highest power
 - Examples:
 - What is $\frac{9x^2+6}{36x+24}$ in simplest form? State any restrictions on the variable.

• What is the product $\frac{x^2-3x+2}{x+2} \cdot \frac{x^2-36}{x^2+5x-6}$ in simplest form. State any restrictions on the variable.

■ What is the quotient $\frac{6x-3x^2}{36-x^2} \div \frac{x^3-x^2-2x}{x^2-5x-6}$ in simplest form? State any restrictions on the variable.

• What is the LCM of $x^2 + 4x - 12$ and $x^2 - 6x + 8$?

■ What is the sum $\frac{4}{x^2+3x} + \frac{x-2}{x^2+6x+9}$ in simplest form? State any restrictions on the variable.

• What is the difference $\frac{x+1}{x^2+2x-8} - \frac{x}{4x-8}$ in simplest form? State any restrictions on the variable.